Hidato is an interesting puzzle, if not particularly difficult. Basically, you've got a grid (usually not square, possibly with holes in it, but always connected) with some blank squares and some squares filled in with cardinal numbers. What you've got to do is to provide the remaining numbers so that you can trace a path from 1 up to the number of squares (which are both always provided) and where each square is in the Moore Neighborhood of the number before it and after it in the sequence. Here's a sample solver for these sorts of puzzles. ====== package require Tcl 8.5 proc init {initialConfiguration} { global grid max filled set max 1 set y 0 foreach row [split [string trim $initialConfiguration "\n"] "\n"] { set x 0 set rowcontents {} foreach cell $row { if {![string is integer -strict $cell]} {set cell -1} lappend rowcontents $cell set max [expr {max($max, $cell)}] if {$cell > 0} { dict set filled $cell [list $y $x] } incr x } lappend grid $rowcontents incr y } } proc findseps {} { global max filled set result {} for {set i 1} {$i < $max-1} {incr i} { if {[dict exists $filled $i]} { for {set j [expr {$i+1}]} {$j <= $max} {incr j} { if {[dict exists $filled $j]} { if {$j-$i > 1} { lappend result [list $i $j [expr {$j-$i}]] } break } } } } return [lsort -integer -index 2 $result] } proc makepaths {sep} { global grid filled lassign $sep from to len lassign [dict get $filled $from] y x set result {} foreach {dx dy} {-1 -1 -1 0 -1 1 0 -1 0 1 1 -1 1 0 1 1} { discover [expr {$x+$dx}] [expr {$y+$dy}] [expr {$from+1}] $to \ [list [list $from $x $y]] $grid } return $result } proc discover {x y n limit path model} { global filled # Check for illegal if {[lindex $model $y $x] != 0} return upvar 1 result result lassign [dict get $filled $limit] ly lx # Special case if {$n == $limit-1} { if {abs($x-$lx)<=1 && abs($y-$ly)<=1 && !($lx==$x && $ly==$y)} { lappend result [lappend path [list $n $x $y] [list $limit $lx $ly]] } return } # Check for impossible if {abs($x-$lx) > $limit-$n || abs($y-$ly) > $limit-$n} return # Recursive search lappend path [list $n $x $y] lset model $y $x $n incr n foreach {dx dy} {-1 -1 -1 0 -1 1 0 -1 0 1 1 -1 1 0 1 1} { discover [expr {$x+$dx}] [expr {$y+$dy}] $n $limit $path $model } } proc applypath {path} { global grid filled puts "Found unique path for [lindex $path 0 0] -> [lindex $path end 0]" foreach cell [lrange $path 1 end-1] { lassign $cell n x y lset grid $y $x $n dict set filled $n [list $y $x] } } proc printgrid {} { global grid max foreach row $grid { foreach cell $row { puts -nonewline [format " %*s" [string length $max] [expr { $cell==-1 ? "." : $cell }]] } puts "" } } proc solveHidato {initialConfiguration} { init $initialConfiguration set limit [llength [findseps]] while {[llength [set seps [findseps]]] && [incr limit -1]>=0} { foreach sep $seps { if {[llength [set paths [makepaths $sep]]] == 1} { applypath [lindex $paths 0] break } } } puts "" printgrid } ==== A quick demonstration: ==== solveHidato { 0 33 35 0 0 . . . 0 0 24 22 0 . . . 0 0 0 21 0 0 . . 0 26 0 13 40 11 . . 27 0 0 0 9 0 1 . . . 0 0 18 0 0 . . . . . 0 7 0 0 . . . . . . 5 0 } ====== It prints this output: ======none Found unique path for 5 -> 7 Found unique path for 7 -> 9 Found unique path for 9 -> 11 Found unique path for 11 -> 13 Found unique path for 33 -> 35 Found unique path for 18 -> 21 Found unique path for 1 -> 5 Found unique path for 35 -> 40 Found unique path for 22 -> 24 Found unique path for 24 -> 26 Found unique path for 27 -> 33 Found unique path for 13 -> 18 32 33 35 36 37 . . . 31 34 24 22 38 . . . 30 25 23 21 12 39 . . 29 26 20 13 40 11 . . 27 28 14 19 9 10 1 . . . 15 16 18 8 2 . . . . . 17 7 6 3 . . . . . . 5 4 ====== <> ???