Version 25 of Cubic Splines

Updated 2004-04-17 17:37:34

Keith Vetter 2003-03-07 - one feature often noted as missing from tk the ability of the canvas to do cubic splines.

Here is a routine Cubic::CubicSpline that takes a list of (x,y) values of control points and returns a list points on the cubic spline curve that's suitable to be used by: canvas create line [Cubic::CubicSplint $xy] ...

Greg Blair extended the code here in Tension Splines by adding several new splines with more controls.


 ##+##########################################################################
 #
 # CubicSpline -- routines to generate the coordinates of a cubic spline
 # given a list of control points. Also included is demo/test harness
 # by Keith Vetter
 #
 # Revisions:
 # KPV Mar 07, 2003 - initial revision
 #


 namespace eval Cubic {}

 ##+##########################################################################
 # 
 # CubicSpline - returns the x,y coordinates of the cubic spline using
 # xy control points.
 # xy => {{x0 y0} {x1 y1} .... {xn yn}}
 #
 # XY points MUST BE SORTED by increasing x
 #
 proc Cubic::CubicSpline {xy {PRECISION 10}} {

    set np [expr {[llength $xy] / 2}]
    if {$np <= 1} return

    set idx 0
    foreach {x y} $xy {
        set X($idx) $x
        set Y($idx) $y
        incr idx
    }

    for {set i 1; set last $X(0)} {$i < $np} {set last $X($i); incr i} {
        set h($i) [expr {double($X($i) - $last)}]
        if {$h($i) == 0} return
        if {$h($i) < 0} return ;# ERROR not sorted
    }

    if {$np > 2} {
        for {set i 1} {$i < $np-1} {incr i} {
            set i2 [expr {$i + 1}]
            set i0 [expr {$i - 1}]
            set diag($i) [expr {($h($i) + $h($i2))/3.0}]
            set sup($i) [expr {$h($i2) / 6.0}]
            set sub($i) [expr {$h($i) / 6.0}]
            set a($i) [expr {($Y($i2) - $Y($i))/$h($i2) - \
                                 ($Y($i) - $Y($i0)) / $h($i)}]
        }
        Cubic::SolveTridiag sub diag sup a [expr {$np - 2}]
    }
    set a(0) [set a([expr {$np - 1}]) 0]

    # Now generate the point list
    set xy [list $X(0) $Y(0)]
    for {set i 1} {$i < $np} {incr i} {
        set i0 [expr {$i - 1}]
        for {set j 1} {$j <= $PRECISION} {incr j} {
            set t1 [expr {($h($i) * $j) / $PRECISION}]
            set t2 [expr {$h($i) - $t1}]
            set y [expr {((-$a($i0)/6 * ($t2 + $h($i)) * $t1 + \
                               $Y($i0))* $t2 + (-$a($i)/6 * \
                               ($t1+$h($i)) * $t2 + $Y($i)) * $t1)/$h($i)}]
            set t [expr {$X($i0) + $t1}]
            lappend xy $t $y
        }
    }
    return $xy
 }
 ##+##########################################################################
 # SolveTriDiag -- solves the linear system for tridiagoal NxN matrix A
 # using Gaussian elimination (no pivoting). Since A is sparse, we pass
 # in three diagonals:
 #     sub(i)  => a(i,i-1)    diag(i) => a(i,i)    sup(i)  => a(i,i+1)
 # 
 # Result is returned in b[1:n]
 # 
 proc Cubic::SolveTridiag {N_sub N_diag N_sup N_b n} {
    upvar 1 $N_sub sub
    upvar 1 $N_diag diag
    upvar 1 $N_sup sup
    upvar 1 $N_b b

    # Factorization and forward substitution 
    for {set i 2} {$i <= $n} {incr i} {
        set i0 [expr {$i - 1}]
        set sub($i) [expr {$sub($i) / $diag($i0)}]
        set diag($i) [expr {$diag($i) - $sub($i) * $sup($i0)}]
        set b($i) [expr {$b($i) - $sub($i) * $b($i0)}]
    }
    set b($n) [expr {$b($n) / $diag($n)}]
    for {set i [expr {$n - 1}]} {$i >= 1} {incr i -1} {
        set i2 [expr {$i + 1}]
        set b($i) [expr {($b($i) - $sup($i) * $b($i2)) / $diag($i)}]
    }
 }

Now to demonstrate and test the code you can use the following:


 ################################################################
 ################################################################
 #
 # Test harness and demo code
 #

 package require Tk

 set S(title) "Cubic Spline"
 set S(r) 5                                      ;# Control point size
 set S(w) 5                                      ;# Line width
 set S(precision) 10
 set INITPOINTS {-200 0 -80 -125 30 100 200 0}

 proc DoDisplay {} {
    global S INITPOINTS

    wm title . $S(title)
    pack [frame .ctrl -relief ridge -bd 2 -padx 5 -pady 5] \
        -side right -fill both -ipady 5
    pack [frame .screen -bd 2 -relief raised] -side top -fill both -expand 1

    canvas .c -relief raised -borderwidth 0 -height 500 -width 500
    pack .c   -in .screen -side top    -fill both -expand 1
    bind all <Alt-c> {console show}
    bind .c <Configure> {ReCenter %W %h %w}
    .c bind p <B1-Motion> [list MouseMove %x %y]

    DoCtrlFrame
    AddCtrlPoint $INITPOINTS
    update
 }
 proc DoCtrlFrame {} {
    button .add  -text "Add Point"   -command AddCtrlPoint -bd 4
    button .dele -text "Delete Point" -command DeleteCtrlPoint -bd 4
    button .clear -text "Clear Points"  -command ClearCtrlPoint
    .add configure  -font "[font actual [.add cget -font]] -weight bold"
    .dele configure -font [.add cget -font]
    .clear configure  -font [.add cget -font]

    scale .prec -orient h -variable S(precision) -font [.add cget -font] \
        -label Precision: -relief ridge -from 1 -to 20 -command DrawCurve
    button .about -text About -command About

    grid .add   -in .ctrl -row 1 -sticky ew
    grid .dele  -in .ctrl -row 2 -sticky ew
    grid .clear -in .ctrl -row 3 -sticky ew -pady 10
    grid .prec  -in .ctrl -row 4 -sticky ew -pady 30
    grid rowconfigure .ctrl 50 -weight 1

    grid .about   -in .ctrl -row 100 -sticky ew
 }
 proc ReCenter {W h w} {                   ;# Called by configure event
    foreach h2 [expr {$h / 2}] w2 [expr {$w / 2}] break
    $W config -scrollregion [list -$w2 -$h2 $w2 $h2]
 }
 proc MakeBox {x y r} {
    return [list [expr {$x-$r}] [expr {$y-$r}] [expr {$x+$r}] [expr {$y+$r}]]
 }
 proc MouseMove {X Y} {
    regexp {p([0-9]+)} [.c itemcget current -tag] => who
    set X [.c canvasx $X] ; set Y [.c canvasy $Y]
    foreach x $::P($who,x)   y $::P($who,y) break
    foreach ::P($who,x) $X   ::P($who,y) $Y break
    .c move p$who [expr {$X - $x}] [expr {$Y - $y}]
    DrawCurve
 }
 proc AddCtrlPoint {{xy {}}} {
    global P S

    set np [llength [array names P *x]]

    if {$xy == {}} {
        set w [expr {[winfo width .c] - 50}]
        set xy [list [expr {$w * rand() - $w/2}] [expr {50 * rand() - 25}]]
    }
    foreach {x y} $xy {
        set P($np,x) $x
        set P($np,y) $y
        .c create oval [MakeBox $x $y $S(r)] -tag [list p p$np] -fill yellow
        incr np
    }
    DrawCurve
 }
 proc DeleteCtrlPoint {} {
    global P

    set np [llength [array names P *x]]
    if {$np == 0} return
    incr np -1

    # Always delete the rightmost control point
    # swap RIGHTMOST and NP then delete NP
    set rightmost [lindex [lindex [SortPoints] end] end]
    .c delete p$rightmost
    .c itemconfig p$np -tag [list p p$rightmost]
    set P($rightmost,x) $P($np,x)
    set P($rightmost,y) $P($np,y)

    unset P($np,x)
    unset P($np,y)

    DrawCurve
 }
 proc ClearCtrlPoints {} {
    global P
    .c delete p
    catch {unset P}
    DrawCurve
 }
 proc SortPoints {} {
    global P

    set np [llength [array names P *x]]
    set xy {}
    for {set i 0} {$i < $np} {incr i} {
        lappend xy [list $P($i,x) $P($i,y) $i]
    }
    set xy2 [lsort -real -index 0 $xy]
    return $xy2
 }
 proc DrawCurve {args} {
    global S

    set xy {}
    foreach pt [SortPoints] {                   ;# Flatten point list
        foreach {x y} $pt break
        lappend xy $x $y
    }

    set xy [Cubic::CubicSpline $xy $::S(precision)]
    .c delete cubic
    if {$xy == {}} return
    .c create line $xy -tag cubic -width $::S(w)
    .c lower cubic
 }
 proc About {} {
    set msg "Cubic Splines\nby Keith Vetter, March 2003"
    tk_messageBox -title About -message $msg
 }
 ################################################################
 ################################################################
 DoDisplay
 DrawCurve

Lars H: A very nice little application, but not at all what my entry (which is now TIP #168) on the Tk 9.0 WishList was about. The problem is not to compute the control points of the splines, but to make the canvas understand something like a Postscript path (list of knot and control point coordinates for cubic Bezier polynomials). In want of support for this in the canvas widget, one could make do with some Tcl procedures for translating such a cubic path to something that the canvas can understand. I suppose this is the kind of thing that should go into tklib.

In the above code, the part of [Cubic::CubicSpline] that comes after Now generate the point list does such a conversion, but it is rather crude. Approximation with polygons is not bad as such (indeed, it is what Postscript does internally when it flattens paths), but in general one would want the number of line segments to be adjusted to the actual curve, so that the "precision" really would give a bound on the approximation error. I don't know how one would achieve this effectively, but there are probably good algorithms in the literature.

AK: Just wondering, could MetaFont contains such algorithms ? It is a companion application to TeX, and Knuth used it generate his Computer Modern Fonts.

Lars H: No, it doesn't. MetaFont goes directly from Bezier curve to discrete pixel edges; there is no intermediate polygon representation (in that case a good thing, because it would introduce additional errors).


[ Category Graphics | Category Mathematics ]