if 0 { [MS] While rereading ''' Data Compression''' [http://www.ics.uci.edu/~dan/pubs/DataCompression.html], I stumbled on Fibonacci universal codes (see Section 3.3 [http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.3]). [Elias coding] provides a different universal code for integers. The Elias codes are asymptotically better, but Fibonacci is better for "small" numbers (up to 514228, when compared to Elias-delta). ---- The coding rests on the observation that all positive numbers can be uniquely by a sequence d(i) in {0, 1} such that 1. N = Sum(i=0...k, d(i)*F(i) 2. d(i)==1 => d(i+1)=0 where F(i) is the i-th Fibonacci number. Note that (2) means that no two adjacent coefficients d(i) can be 1. By storing the coefficients in bits up to the last non-zero, and adding a final 1 we obtain an encoding such that two consecutive 1 indicate the end of a number and the start of the next. The initial encodings are: 1 = F(1) 11 2 = F(2) 011 3 = F(3) 0011 4 = F(1)+F(3) 1011 5 = F(4) 00011 6 = F(1)+F(4) 10011 7 = F(2)+F(4) 01011 8 = F(5) 000011 ... 16 = F(3)+F(7) 00100011 ---- The algorithm to compute the Fibonacci encoding of a number is easiest to describe by the code below (proc fiboEncodeNum) - note that this implementation is missing the final 1, which should be added. The code below implements procs to encode a list of positive integers as a bitstream, and to decode a bitstream as a list of positive numbers. Usage is % fiboEncodeList {1 2 3 9 8 7} 11011001110001100001101011 % fiboDecodeStr 11011001110001100001101011 1 2 3 9 8 7 The code: } # # A memoizing generator for the Fibonacci numbers. # variable fiboList [list 1 1] proc fibo n { variable fiboList set len [llength \$fiboList] if {\$len > \$n} { return [lindex \$fiboList \$n] } set res [expr {[fibo [expr {\$n-2}]] + [fibo [expr {\$n-1}]]}] lappend fiboList \$res return \$res } # # Computing the Fibonacci encoding of a number - see # http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3 # (memoizing) # # Slight changes with respect to the reference in order # to improve performance: # - the final 11 is replaced by an final 1, so that # split and join are easier to use to encode/decode # streams. # variable fiboEncs proc fiboEncodeNum n { if {\$n < 1} { error "fiboEncode works on positive numbers" } variable fiboEncs if {[info exists fiboEncs(\$n)]} { return \$fiboEncs(\$n) } upvar 0 fiboEncs(\$n) res set res {} # Find the first fibonacci number \$f > \$n set f 1 for {set k 1} {\$f <= \$n} {} { set f [fibo [incr k]] } while {[incr k -1]} { set f [fibo \$k] if {\$f <= \$n} { set res 1\$res incr n -\$f } else { set res 0\$res } } return \$res } proc fiboDecodeNum str { set coeffs [split \$str {}] if {[lindex \$coeffs end] != 1} { error "Number badly encoded" } set n 0 set k 0 foreach c \$coeffs { incr k if {\$c} { incr n [fibo \$k] } } set n } proc fiboEncodeList lst { set res {} foreach num \$lst { append res [fiboEncodeNum \$num] 1 } return \$res } proc fiboDecodeString str { set str [string map {11 "1 "} \$str] # Strip ending 0s (padding) if {[string match 0* [lindex \$str end]]} { set str [lrange \$str 0 end-1] } set res [list] foreach s \$str { lappend res [fiboDecodeNum \$s] } return \$res }