'''I was going to do a sophisticated implementation in Lisp, but Tcl let me hack this together in two nights...''' Mancala (or Mankala) is an ancient african board game with many variations. Here is an implementation based on an Egyptian version. It doesn't have a sophisticated computer play algorithm (''proc gen-best-move'' is my excuse for recursive look ahead intelligence), but is yet another example of [Street Programming] in Tcl. -- [Todd Coram] set HELPMSG { Mancala - an ancient african board game. Version 0.99a By Todd Coram (tcoram@pobox.com) I couldn't find anyone to play Mancala with me, so I thought that I would teach a computer how to. Sad, isn't it? Mancala is played on a board with 12 pits (cups, bowls, whatever) and 2 stores (which hold captured stones). There are 2 players and each is presented with 6 pits and 1 store (positioned to the right of the pits). In each pit there are initially 3 stones. Rules (This implementation follows the Egyptian rules): The goal is to get as many of these stones into your store as possible. The player with the most stones at the end of the game wins. The game is over when one player's 6 pits are empty. A player moves by taking all of the stones from a pit and dropping them (one by one) into the pits to the right. If the player runs out of pits, a stone is dropped into the store. If there are still more stones, the player continues distributing the stones in a counter-clockwise fashion into the opponents pits (or store). During a play, if the last stone you drop is placed into an empty pit on your side, you capture your opponents stones in the pit opposite your empty pit. If you do capture some opponent stones, you take them and your last stone and place them all into your store. If your last stone is dropped in your store, you get to move again. At the end of the game, just to make things more interesting, the player with stones remaining in their pits may take all of those stones and add them to their own store! You just can't try to clear out your side of the board. You may lose by doing so. How to play this simulation: Choose a Level (the higher the number, the longer it takes the computer to make a move) and press "New Game". You move first. You make a move by clicking on any of the stones in the bottom row. } # Create a board as an array with sides (players) 'a' and 'b'. Each pit # is indexed as 'side,pit' (e.g a,1 a,2 a,3 a,4, a,5 a,6). The stores are # a,S and b,S. Return the array flattened into a list. # proc make-board {} { foreach side {a b} { foreach pit {1 2 3 4 5 6} { set board($side,$pit) 3 } set board($side,S) 0 } return [array get board] } # The basic mechanism behind making a legal move. # Given board as a list (flattened array) and a target pit to move # (e.g. a,3) and an optional update command, make a move. # -1 is returned if the player tries and move an empty pit. # Otherwise a modified board is returned as a flattened array along with # a flag indicating whether or not the player can play again. # proc move {board player,pit {update_stones {}}} { set go_again 0 array set b $board foreach {player pit} [split ${player,pit} \,] break set side $player set stones [set b($side,$pit)] if {$stones == 0} { error "no stones! $player,$pit" } set orig_pit $pit set orig_side $side set opp [opponent $side] incr pit while {$stones > 0} { incr stones -1 incr b($orig_side,$orig_pit) -1 if {$pit > 6} { incr b($side,S) set side $opp set pit 1 set go_again 1 } else { set go_again 0 incr b($side,$pit) # See if we captured any opponent stones # if {$stones==0 && $player==$side && [set b($side,$pit)] == 1} { if {$update_stones != {}} { eval $update_stones [list [array get b]] update idletasks after 500 } array set b \ [capture_opposite [array get b] $side $opp $pit] } incr pit } if {$update_stones != {}} { eval $update_stones [list [array get b]] update idletasks after 500 } } return [list $go_again [array get b]] } proc capture_opposite {board side opp my_pit} { array set b $board set their_pit [expr {abs($my_pit-((6)+1))}] if {[set b($opp,$their_pit)] != 0} { incr b($side,S) \ [expr {[set b($opp,$their_pit)]+[set b($side,$my_pit)]}] set b($side,$my_pit) 0 set b($opp,$their_pit) 0 } return [array get b] } # The computer's algorithm for making a move. If you have a better algorithm # this is where you would plug it in. # Given a board, the player you are generating the move for, an initial side # (usually the player) and a a nesting level (the number of moves to # look ahead), return a list consisting of the 'pit' and 'profit' chosen # as the best move. # proc gen-best-move {board player side {nest 2}} { set best {-1 -100}; # {pit profit} array set b $board foreach pit {1 2 3 4 5 6} { update; # give up CPU once in a while if {[set b($side,$pit)] != 0} { if {[lindex $best 0] == -1} { set best [list $pit -100];# worst case: we have a valid pit } foreach {go_again mod_board} [move $board $side,$pit] break if {$nest == 0} { # We have exhausted all moves starting at this pit... set profit [profit $mod_board $player] if {[lindex $best 1] < $profit} { set best [list $pit $profit];# save the best profit of all } } if {$nest > 0} { # try next move as opponent (or self if you can go again). set opp [expr {$go_again ? $side : [opponent $side]}] foreach {c profit} \ [gen-best-move $mod_board $player $opp [expr {$nest-1}]] \ break if {[lindex $best 1] < $profit} { set best [list $pit $profit];# best profit for pit } } } } return $best } # Every move has a 'profit'. A profit is the number of player's stones in their # store minus the number of opponent's stones in their store. # proc profit {board player} { if {[game-over? $board]} { set board [sweep $board] } foreach {a b} [tally-score $board] break return [expr {$player == "a" ? ($a - $b) : ($b - $a)}] } proc make-best-move {board player {nest 2} {update {}}} { foreach {pit profit} [gen-best-move $board $player $player $nest] break puts "best move pit=$pit, profit=$profit" if {$pit <= 0} { return $board } else { return [move $board $player,$pit $update] } } proc game-over? {board} { foreach {side_a side_b} [sum-sides $board] { return [expr {$side_a == 0 || $side_b == 0}] } } proc tally-score {board} { array set b $board return [list $b(a,S) $b(b,S)] } proc sum-sides {board} { array set brd $board foreach side {a b} { set $side 0 foreach pit {1 2 3 4 5 6} { incr $side [set brd($side,$pit)] } } return [list $a $b] } # Sweep remaining stones into their owner's store. # proc sweep {board} { array set brd $board foreach side {a b} { foreach pit {1 2 3 4 5 6} { incr brd($side,S) [set brd($side,$pit)] set brd($side,$pit) 0 } } return [array get brd] } # Who is my opponent? # proc opponent {player} { return [expr {$player == "a" ? "b" : "a"}] } ################################################################ # Start of the Tk GUI stuff.. # package require Tk proc tk-make-board {c board} { global coords set padx 4 set padx2 [expr {$padx * 2}] set pady 4 set pit_width [expr {([$c cget -width] / 8) - ($padx/2)}] set pit_height [expr {([$c cget -height] / 2) - ($pady/2)}] set coords(width) $pit_width set coords(height) $pit_height set S_offset_y [expr {$pady+($pit_height/4)}] set coords(height,S) [expr {$pit_height*2}] $c create rectangle $padx2 $S_offset_y \ $pit_width [expr {$coords(height,S)-$S_offset_y}] \ -fill white \ -tags a,S set coords(a,S) [list $padx2 $S_offset_y] foreach {row side direction} {0 a reverse 1 b forward} { foreach pit {1 2 3 4 5 6} { if {$direction == "reverse"} { set tag $side,[expr {abs($pit-7)}] } else { set tag $side,$pit } set x [expr {($pit_width*$pit)+$padx2}] set y [expr {$pady+($row*$pit_height)}] $c create rectangle $x $y \ [expr {$x + $pit_width-$padx2}] \ [expr {$y + $pit_height-$pady}] \ -fill white \ -tags [list $tag pit] set coords($tag) [list $x $y] $c bind stone-$tag \ [list tk-move $c $side $tag] } } set x [expr {($pit_width*7)+$padx2}] $c create rectangle $x $S_offset_y \ [expr {($pit_width*8)}] [expr {$coords(height,S)-$S_offset_y}] \ -fill white \ -tags b,S set coords(b,S) [list $x $S_offset_y] } proc tk-draw-stones {c board} { array set b $board foreach {row side} {0 a 1 b} { foreach pit {1 2 3 4 5 6} { tk-stone .c $b($side,$pit) $side,$pit } } tk-stone .c $b(a,S) a,S tk-stone .c $b(b,S) b,S } proc tk-stone {c stone_cnt side,pit} { global coords .c delete stone-${side,pit} foreach {x y} [set coords(${side,pit})] { incr x [expr {$coords(width)/2}] incr y [expr {$coords(height)-12}] set width [expr {$coords(width)-16}] tk-stack-stones $c $stone_cnt $x $y $width stone-${side,pit} .c create text $x $y -text $stone_cnt \ -tags stone-${side,pit} } } proc tk-stack-stones {c cnt x y width tag} { for {set i 1} {$i <= $cnt} {incr i} { .c create oval [expr {$x - ($width/2)}] \ [expr {$y - ($i*10)}] \ [expr {$x + ($width/2)}] \ [expr {$y - ($i*10)-20}] \ -fill brown -tags $tag } } proc tk-move {c player side,pit} { global MAIN_BOARD LEVEL if {[catch { # catch illegal moves. (empty pits) foreach {go_again MAIN_BOARD} \ [move $MAIN_BOARD ${side,pit} [list tk-draw-stones $c]] \ break } err] != 0} { return } tk-draw-stones $c $MAIN_BOARD if {[tk-game-over $c $MAIN_BOARD]} { return } if {$go_again} { .f.status configure -text "Your move (again)." return } set go_again 1 .f.status configure -text "My move. Thinking..." while {$go_again} { update idletasks foreach {go_again MAIN_BOARD} \ [make-best-move $MAIN_BOARD [opponent $player] $LEVEL \ [list tk-draw-stones $c]] \ break update idletasks if {[tk-game-over $c $MAIN_BOARD]} { return } if {$go_again} { .f.status configure -text "My move (again). Thinking..." update idletasks after 1000 } } .f.status configure -text "Your move." } proc tk-game-over {c board} { if {[game-over? $board]} { set board [sweep $board] tk-draw-stones $c $board foreach {a b} [tally-score $board] break set winner [expr {$a <= $b ? ($a == $b ? "nobody" : "you") : "the computer"}] set res [tk_messageBox -message "Game over! $winner won"] return 1 } return 0 } proc tk-game {} { global MAIN_BOARD LEVEL canvas .c -width 480 -height 480 frame .f button .f.new -text "New Game" -command { set MAIN_BOARD [make-board]; tk-make-board .c $MAIN_BOARD; tk-draw-stones .c $MAIN_BOARD } label .f.level_l -text " Play Level : " tk_optionMenu .f.level LEVEL 0 1 2 3 4 5 6 label .f.status -text "Your move." -fg brown button .f.help -text "Help" -command { print-help .f.help} button .f.quit -text "Quit" -command { exit } pack .f.new -side left pack .f.level_l -side left pack .f.level -side left pack .f.status -side left -fill x -expand yes pack .f.quit -side right pack .f.help -side right pack .c -fill both -expand yes pack .f -fill x -expand yes .f.new invoke } proc print-help {w} { global HELPMSG if {[winfo exists .h]} { wm state .h normal raise .h .f return } toplevel .h wm title .h "Mancala Help" frame .h.f frame .h.f.tb text .h.f.tb.t -width 80 -height 25 -bg white -wrap word \ -yscrollcommand {.h.f.tb.s set} .h.f.tb.t insert end $HELPMSG .h.f.tb.t configure -state disabled scrollbar .h.f.tb.s -orient vertical -command {.h.f.tb.t yview} pack .h.f.tb.s -fill y -side right pack .h.f.tb.t -fill both -expand yes button .h.f.b -text "Ok" -command {destroy .h} focus .h.f.b bind .h.f.b [list .h.f.b invoke] pack .h.f.tb -expand yes -fill both pack .h.f.b -side bottom -anchor c pack .h.f -expand yes -fill both } set LEVEL 2 tk-game