[rwm] -- I thought the [primes] page was getting too crowded so I added this as a new page. My intent on adding this was to help teach the math and provide a simple Tcl implementation of the algorithm. (It might belong in a cookbook of useful recipes??) '''Warning''' - This is a probabalistic test and there are several know "lucas pseudo-primes" (Numbers that are not flagged as composite, but are in fact composite.) References: 1. fips183-6 - http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf 2. sci.crypt discussion of lucas testing: https://groups.google.com/forum/?fromgroups#!msg/sci.crypt/uGko8m1lGQM/IhQTSXw6EzAJ Dependencies: 1. modmath::div2 - in modular math if you need to divide an odd number by 2 you can add the modulus first to make the divisor even (ie A/2 mod M can be rewritten as (A+M)/2 mod M when needed) 2. jacobi - a routine to calculate the [jacobi symbol] binaryModExpo - a modular exponentiation function (I like the one at the bottom of [RSA in Tcl]) ====== set debug(primeCheckLucas) 0 set modes(fips186) 0 proc primeCheckLucas {N} { variable modes variable debug ## implemented by rwm 9/24/12 from ANSI X9.31 # find the first D in the sequence {5 -7 9 -11 13 -15} # for which the Jacobi symbol (D/N)=-1. # Set P=1 and Q=(1-D)/4 # If U(n-1) = 0 mod N then N is probably prime. # To calculate Uk where K= N+1 from the lucas sequence perform the steps # if {$debug(primeCheckLucas)} { puts stderr "${::STATUS}: primeCheckLucas [hex $N]" } for {set i 0} {1} {incr i} { set D [expr {$i&1? (-2*$i-5) : (5+2*$i)}] if {$debug(primeCheckLucas)} { puts stderr "${::STATUS}: primeCheckLucas testing D=$D" } if {[jacobi $D $N] == 0} { if {$modes(fips186)} { if {$debug(primeCheckLucas)} { puts stderr "${::STATUS}: number is composite since Jacobi($D,N)==0" } return 0 ;# for any D id the Jacobi is 0 N is composite } } if {[jacobi $D $N] == -1} break } if {$debug(primeCheckLucas)} { puts stderr "${::STATUS}: primeCheckLucas D=$D ([hex $D]) satisfies jacobi = -1" } ## Now we have found a D that satisfies jacobi(D,N)=-1 eval {;# steps set P 1 set Q [expr {(1-$D)/4}] ## if (UK % N) == 0 N is probably prime ## UK is U @ K=N+1 ## or U(n+1) which I'll call Uk #... ## following steps eval {;#1 set D [expr {($P*$P)-4*$Q}] } eval {;#2 ?? set K [expr {$N+1}] # and an associated binary expansion over r {$K&(1<<$r)} or {($K>>$r)&1} set Kbinary [bin $K] set Klength [string length $Kbinary] set r [expr {$Klength-1}] if {$debug(primeCheckLucas)} { puts stderr "${::STATUS}: primeCheckLucas K expands as: $Kbinary" puts stderr "${::STATUS}: primeCheckLucas K is $Klength bits long" puts stderr "${::STATUS}: primeCheckLucas r=$r" } } eval {;#3 set U 1 set V $P } set p $N ;#<-------------- RWM GUESS eval {;#4 for {set i [expr {$r-1}]} {$i >= 0} {incr i -1} { set nextU [expr {($U*$V)%$p}] ;# <---------- p ??? set nextV [modmath::div2 [expr {($V*$V)+($D*$U*$U)}] $p];# <---------- p ??? set U $nextU set V $nextV if {$K&(1<<$i)} { set nextU [modmath::div2 [expr {$P*$U+$V}] $p] set nextV [modmath::div2 [expr {$P*$V+$D*$U}] $p] if {$modes(fips186)} { ## -- fips 186 is different set nextU [modmath::div2 [expr {$U+$V}] $p] set nextV [modmath::div2 [expr {$V+$D*$U}] $p] } set U $nextU set V $nextV } if {$debug(primeCheckLucas)} { puts stderr "${::STATUS}: primeCheckLucas i=$i (U,V)=($U,$V) Ki=[expr {($K&(1<<$i))?1:0}]" } } } eval {;#5 set Uk $U set Vk $V } } if {$modes(fips186)} {# fips 186 is different if {$U == 0} { return 1;# probably prime } else { return 0;# known composite } } # so do final check on Uk if {(($U*$K) % $N) == 0} { return 1;# probably prime } else { return 0;# known composite } } ====== Here are the 1st 20 pseudo-primes I get by comparing the above code to small-prime trial division and 27 roundes of MR testing starting at N=3 and stepping by 2: ====== 5 11 323 377 1159 1829 3827 5459 5777 9071 9179 10877 11419 11663 13919 14839 16109 16211 18407 18971 ====== <> Mathematics | Arts and crafts of Tcl-Tk programming