The Wikipedia's description [http://en.wikipedia.org/wiki/Wavelet], while typically accurate, is too abstract for [CL]'s taste. Here's the idea: 'know Laplace or Fourier? 'Seen "sonograms" that resolve, say, a voice signal into its constituent frequencies? Perhaps you have some notion of the ubiquity and potency of such techniques. They rely on the duality of a signal (typically conceived along a time dimension) and its frequency analysis (the signal decomposed into the "harmonics" that make it up). The signal and its constituent frequencies are ideally "infinite", that is, defined over the entire real (or complex, ...) line. Instead of those pure tones, consider instead signals limited in time--a note that starts and stops. Doesn't that hint at a better match for physical reality? And what if the calculus of signal decomposition into band- and time-limited resolvents were tweaked so that its calculations matched up particularly well with computer capabilities, by, for example, admitting natural expressions in binary? At that point, you'd have powerful, very high-performance techniques for analysis of signals in terms of physically-meaningful fundamental bases. You'd have wavelets. As wavelet theory remains young, there's a lot of exploration and interfacing still to do. [Tcl], of course, makes a great partner. ---- [aricb]: I'm familiar with spectrograms, which are commonly used in phonetics to analyze speech signals (and which the [Snack] extension can produce). My understanding of spectrograms is that they are derived from Fourier analysis of a signal. Can somebody explain how a wavelet differs from a spectrogram? ---- [Serge Kazantzev] Time-scale (wavelet transforms) analysis is often presented as an alternative method to time-frequency (fourier transforms) analysis, and strong links exist between the two. On-line tutorials such as [http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html] offer an exploration the differences and similarities between the two. Wavelet spectogram called '''scalogram''', refers to a time-scale energy distribution defined as the square modulus of the wavelet coefficients. Scalogram tastes like spectogram, however there is no trivial transition between scalogram and spectrogram. ---- [TV] Well, it's a complicated subject of course, preferably for a background in functional integrals. Theoretical physics already for about a century works with a (complicated form of) wavelett type functions, as a basis for Fock space which can be thought to contain all possible solution of the Schroedinger equation for a certain measurement basis. So the idea is most certainly very not new or a more complicated continuation of the top of mathematics. The comparison with Fourier analysis is that the point of fourier analysis is a frequency tranform over the whole of the time of the signal, in principle from -inf (or 0) to inf, or everywhere where the signal is non-zero. Practically, for instance with the mathematical often draconic [FFT] one usually wants to also localize the occurence of certain frequencies in time, so that the question arises how to say where a certain spectral line appears in the signal, and where not. This is not so easily generally answerable, for two main reasons: it requires a non-trivial analysis of the signal, and the fourier transform doesn't answer this question at all. Mainly, the help of complicated (given.. with functional integrals) statistics can make analysis of every bit of the signal (like in physics) so that a fourier transform could be made for every point of the time axis, and then also with all kinds of widths of the gaussian which then appears. So the outcome of the transform becomes higher dimensional quite a bit. The integrals for standard functions which are computable for well known Fourier basic functions are not so computable anymore either, at least that becomes a lot more complicated. In the more popular sense of the [Fast Fourier Transfor] one takes a crude approcimation of a time segment based fourier transform, which is very non-trivial to analyse (try any FFT on a single sine wave which isn't of equivalent multiple frequency of the FFT interval, you'll get a well filled spectrum while there's just one spectral component..) , which can of course be practical. To solve the 'hard boundary' and also that the nature of that transform isn't like signal correlation analysis type that fits mathematically formulated problems better, the wavelet is sort of a completely smooth basis instead of the hard cut FFT and the full length fourier transform. I guess wavelets can be infinite like an exponential multiplied by a sine, or (which has different fundamental mathematical properties) can be time interval limited, but smooth, like some polynomial coming from and going to 1 and then again zero, multiplied with a sine. When an FFT result is achieved by average over for instance a few low level FFTs with overlapping intervals, all kinds of filtered results are achieved, which in general are not a good localized frequency analysis, but a bit smoother. I. Debuchie (IIRC) has done well known work on practical wavelet analysis, I think she was at Princeton at some point. ---- [Category Glossary]