GS - This code displays 3d polyhedra in shaded or wireframe mode. It uses only the tk canvas. The illumination model is a simple flat shading model [L1 ]. The color intensity of a face is proportional to the angle between its normal and a light direction.
- A starkit version with more demos is available at [L2 ]
- A lightweight tclet version can be seen at [L3 ] (sources [L4 ])
The hidden face removal algorithm works well with convex objects but is very limited for the others. See for instance the torus or the shuttle as bad examples.
Jeff Smith 2019-07-13 : Below is an online demo using CloudTk
Jeff Smith 2020-08-19 : A new demo using 3display.kit which has more shapes. This demo runs "3D polyhedra with simple tk canvas" in an Alpine Linux Docker Container. It is a 27.5MB image which is made up of Alpine Linux + tclkit + 3display.kit + + libx11 + libxft + fontconfig + ttf-linux-libertine. It is run under a user account in the Container. The Container is restrictive with permissions for "Other" removed for "execute" and "read" for certain directories.
Jeff Smith 2025-01-08 : This demo now runs with Tcl9.
PWQ 2005-05-02: moved bind command to after package require Tk!
PYK 2012-11-26: eliminated [update] command, added "speed" scale, added <Destroy> binding
ZB 2014-10-24: fixed a little flaw in DisplayInit (should be there "Shaded", not "shaded")
#!/bin/env tclsh # polyhedra.tcl # Author: Gerard Sookahet # Date: 30 Mai 2005 # Description: Rotating polyhedra using a 'standard' tk canvas. # Flat shading and wireframe mode. package require Tcl 8.5 package require Tk 8.4 bind all <Escape> {exit} proc Barycenter {lcoords} { set X 0 set Y 0 set n [llength $lcoords] foreach vtx $lcoords { foreach {x y} $vtx { set X [expr {$X + $x}] set Y [expr {$Y + $y}] } } return [list [expr {$X/$n}] [expr {$Y/$n}]] } proc CrossProduct {x1 y1 z1 x2 y2 z2} { return [list [expr {$y1*$z2 - $y2*$z1}] \ [expr {$z1*$x2 - $z2*$x1}] \ [expr {$x1*$y2 - $x2*$y1}]] } proc DotProduct {x1 y1 z1 x2 y2 z2} { return [expr {$x1*$x2 + $y1*$y2 + $z1*$z2}] } proc MatrixVectorProduct {M V} { set x [lindex $V 0] set y [lindex $V 1] set z [lindex $V 2] return [list [expr {[lindex $M 0 0]*$x+[lindex $M 1 0]*$y+[lindex $M 2 0]*$z}] \ [expr {[lindex $M 0 1]*$x+[lindex $M 1 1]*$y+[lindex $M 2 1]*$z}] \ [expr {[lindex $M 0 2]*$x+[lindex $M 1 2]*$y+[lindex $M 2 2]*$z}]] } proc MatrixProduct {M1 M2} { set M {{0 0 0 0} {0 0 0 0} {0 0 0 0} {0 0 0 0}} for {set i 0} {$i<4} {incr i} { for {set j 0} {$j<4} {incr j} { lset M $i $j 0 for {set k 0} {$k<4} {incr k} { lset M $i $j [expr {[lindex $M $i $j]+[lindex $M1 $i $k]*[lindex $M2 $k $j]}] } } } return $M } proc MatrixRotation { ax ay az } { set sax [expr {sin($ax)}] set cax [expr {cos($ax)}] set say [expr {sin($ay)}] set cay [expr {cos($ay)}] set saz [expr {sin($az)}] set caz [expr {cos($az)}] set Mx {{1 0 0 0} {0 0 0 0} {0 0 0 0} {0 0 0 1}} set My {{0 0 0 0} {0 1 0 0} {0 0 0 0} {0 0 0 1}} set Mz {{0 0 0 0} {0 0 0 0} {0 0 1 0} {0 0 0 1}} # Rotation matrix around X axis with angle ax lset Mx 1 1 $cax lset Mx 1 2 $sax lset Mx 2 1 [expr {-1*$sax}] lset Mx 2 2 $cax # Rotation matrix around Y axis with angle ay lset My 0 0 $cay lset My 0 2 [expr {-1*$say}] lset My 2 0 $say lset My 2 2 $cay # Rotation matrix around Z axis with angle az lset Mz 0 0 $caz lset Mz 0 1 $saz lset Mz 1 0 [expr {-1*$saz}] lset Mz 1 1 $caz return [MatrixProduct [MatrixProduct $Mx $My] $Mz] } # Compute normal vector and norm for each face # ------------------------------------------------------------------- proc NormalVector {lvtx lcnx} { set lnv {} set lmv {} foreach face $lcnx { foreach {nx ny nz} [CrossProduct \ [expr {[lindex $lvtx [lindex $face 1] 0] - [lindex $lvtx [lindex $face 0] 0]}] \ [expr {[lindex $lvtx [lindex $face 1] 1] - [lindex $lvtx [lindex $face 0] 1]}] \ [expr {[lindex $lvtx [lindex $face 1] 2] - [lindex $lvtx [lindex $face 0] 2]}] \ [expr {[lindex $lvtx [lindex $face 2] 0] - [lindex $lvtx [lindex $face 1] 0]}] \ [expr {[lindex $lvtx [lindex $face 2] 1] - [lindex $lvtx [lindex $face 1] 1]}] \ [expr {[lindex $lvtx [lindex $face 2] 2] - [lindex $lvtx [lindex $face 1] 2]}]] {} lappend lnv [list $nx $ny $nz] lappend lmv [DotProduct $nx $ny $nz $nx $ny $nz] } return [list $lnv $lmv] } # 2D projection # ------------------------------------------------------------------- proc Projection {x y z M} { global scx scy vdist set nx [expr {[lindex $M 0 0]*$x+[lindex $M 1 0]*$y+[lindex $M 2 0]*$z}] set ny [expr {[lindex $M 0 1]*$x+[lindex $M 1 1]*$y+[lindex $M 2 1]*$z}] set nz [expr {([lindex $M 0 2]*$x+[lindex $M 1 2]*$y+[lindex $M 2 2]*$z+10)/$vdist}] return [list [expr {$nx/$nz+$scx/2.0}] [expr {$ny/$nz+$scy/2.0}]] } # Apply transformations to vertex coordinates # ------------------------------------------------------------------- proc Transformations {lvtx lnv} { global ax ay az set lnew {} set lvn {} # Compute matrix rotation set M [MatrixRotation $ax $ay $az] set i 0 # Apply projection foreach vtx $lvtx { lappend lnew [Projection [lindex $vtx 0] [lindex $vtx 1] [lindex $vtx 2] $M] incr i } # Normal vector rotation foreach v $lnv {lappend lvn [MatrixVectorProduct $M $v]} return [list $M $lnew $lvn] } # Compute color entensity for each face # ------------------------------------------------------------------- proc Intensity {lnv lmv lvv} { set lclr {} set v [DotProduct [lindex $lvv 0] [lindex $lvv 1] [lindex $lvv 2] \ [lindex $lvv 0] [lindex $lvv 1] [lindex $lvv 2]] set i 0 foreach nv $lnv { set clr 31 set a [DotProduct [lindex $nv 0] [lindex $nv 1] [lindex $nv 2] \ [lindex $lvv 0] [lindex $lvv 1] [lindex $lvv 2]] set b [expr {sqrt([lindex $lmv $i]*$v)}] set clr [expr {round(31*($a/$b))}] lappend lclr [expr {$clr < 0 ? 31 : [expr {32 - $clr}]}] incr i } return $lclr } # Start the display and rotation loop # ------------------------------------------------------------------- proc DisplayModel {w s} { global stop global display global ax ay az tx ty tz global form $w.c delete all set stop 0 global iterations set ax 0.2 set ay 0.1 set az 0.3 set tx 0 set ty 0 set tz 0 set d $display foreach {t lvtx lcnx lclr} [ReadData $s] {} $w.c create text 10 10 -anchor w -fill white -text $t foreach {lnv lmv} [NormalVector $lvtx $lcnx] {} set lpoly [DisplayInit $w $d $lcnx $lclr] after cancel $::run set ::run [after 0 [list Display$d $w $lpoly $lvtx $lcnx $lnv $lmv]] } # Data structure for models with vertices and connectivity # ------------------------------------------------------------------- proc ReadData { n } { set lvtx {} set lcnx {} set lclr {} set txt "" switch $n { tetrahedron { set txt "tetrahedron: 4 faces 4 vertices 5 edges" set a [expr {1.0/sqrt(3.0)}] set lvtx [list [list $a $a $a] [list $a -$a -$a] \ [list -$a $a -$a] [list -$a -$a $a]] set lcnx {{0 3 1} {2 0 1} {3 0 2} {1 3 2}} } cube { set txt "cube: 6 faces 8 vertices 12 edges" set lvtx {{0.7 0.7 0.7} {-0.7 0.7 0.7} {-0.7 -0.7 0.7} {0.7 -0.7 0.7} {0.7 0.7 -0.7} {-0.7 0.7 -0.7} {-0.7 -0.7 -0.7} {0.7 -0.7 -0.7}} set lcnx {{4 7 6 5} {0 1 2 3} {3 2 6 7} {4 5 1 0} {0 3 7 4} {5 6 2 1}} } octahedron { set txt "octahedron 8 faces 6 vertices 16 edges" set lvtx {{1 0 0} {0 1 0} {-1 0 0} {0 -1 0} {0 0 1} {0 0 -1}} set lcnx {{0 1 4} {1 2 4} {2 3 4} {3 0 4} {1 0 5} {2 1 5} {3 2 5} {0 3 5}} } dodecahedron { set txt "dodecahedron 12 faces 20 vertices 30 edges" set s3 [expr sqrt(3)] set s5 [expr sqrt(5)] set alpha [expr {sqrt(2.0/(3 + $s5))/$s3}] set beta [expr {(1.0 + sqrt(6.0/(3 + $s5) - 2 + 2*sqrt(2.0/(3.0 + $s5))))/$s3}] set gamma [expr {1.0/$s3}] set lvtx [list \ [list -$alpha 0 $beta] \ [list $alpha 0 $beta] \ [list -$gamma -$gamma -$gamma] \ [list -$gamma -$gamma $gamma] \ [list -$gamma $gamma -$gamma] \ [list -$gamma $gamma $gamma] \ [list $gamma -$gamma -$gamma] \ [list $gamma -$gamma $gamma] \ [list $gamma $gamma -$gamma] \ [list $gamma $gamma $gamma] \ [list $beta $alpha 0] \ [list $beta -$alpha 0] \ [list -$beta $alpha 0] \ [list -$beta -$alpha 0] \ [list -$alpha 0 -$beta] \ [list $alpha 0 -$beta] \ [list 0 $beta $alpha] \ [list 0 $beta -$alpha] \ [list 0 -$beta $alpha] \ [list 0 -$beta -$alpha]] set lcnx {{0 1 9 16 5} {1 0 3 18 7} {1 7 11 10 9} {11 7 18 19 6} {8 17 16 9 10} {2 14 15 6 19} {2 13 12 4 14} {2 19 18 3 13} {3 0 5 12 13} {6 15 8 10 11} {4 17 8 15 14} {4 12 5 16 17}} } icosahedron { set txt "icosahedron: 20 faces 12 vertices 30 edges" set X 0.525731112119133606 set Z 0.850650808352039932 set lvtx [list [list -$X 0.0 $Z] [list $X 0.0 $Z] [list -$X 0.0 -$Z] \ [list $X 0.0 -$Z] [list 0.0 $Z $X] [list 0.0 $Z -$X] \ [list 0.0 -$Z $X] [list 0.0 -$Z -$X] [list $Z $X 0.0] \ [list -$Z $X 0.0] [list $Z -$X 0.0] [list -$Z -$X 0.0]] set lcnx {{4 0 1} {9 0 4} {5 9 4} {5 4 8} {8 4 1} {10 8 1} {3 8 10} {3 5 8} {2 5 3} {7 2 3} {10 7 3} {6 7 10} {11 7 6} {0 11 6} {1 0 6} {1 6 10} {0 9 11} {11 9 2} {2 9 5} {2 7 11}} } } for {set i 0} {$i <= [llength $lcnx]} {incr i} { lappend lclr "0000[format %2.2x 255]" } return [list $txt $lvtx $lcnx $lclr] } # Initialization of canvas with polygonal objects filled or not # ------------------------------------------------------------------- proc DisplayInit {w d lcnx lclr} { set lpoly {} set i 0 if {$d == "Shaded"} then { foreach cnx $lcnx { lappend lpoly [$w.c create polygon \ [string repeat " 0" [expr {2*[llength $cnx]}]] \ -fill "#[lindex $lclr $i]"] incr i } } else { foreach cnx $lcnx { lappend lpoly [$w.c create polygon \ [string repeat " 0" [expr {2*[llength $cnx]}]] \ -fill black -outline blue] } } return $lpoly } # Flat shaded display with gradient color # ------------------------------------------------------------------- proc DisplayShaded {w lpoly lvtx lcnx lnv lmv} { if {$::stop} return global iterations global ax ay az set ax [expr {$ax-0.02}] set az [expr {$az+0.02}] set ay [expr {$ay+0.025}] set lgradB {} foreach {M lnew lvn} [Transformations $lvtx $lnv] {} # Light vector is set to <1 1 -1> foreach i [Intensity $lvn $lmv [list 1 1 -1]] { lappend lgradB [format %2.2x [expr {100+154*$i/32}]] } set i 0 foreach cnx $lcnx { set lcoords {} foreach j $cnx {lappend lcoords [lindex $lnew $j]} # Backface culing for hidden face. Not removed but only reduced to a point if {[lindex $lvn $i 2] < 0} { eval $w.c coords [lindex $lpoly $i] [join $lcoords] $w.c itemconfigure [lindex $lpoly $i] -fill "#0000[lindex $lgradB $i]" } else { $w.c coords [lindex $lpoly $i] [string repeat " [join [Barycenter $lcoords]]" [llength $cnx]] } incr i } if {[incr ::iterations]} { set ::run [after $::speed [list DisplayShaded $w $lpoly $lvtx $lcnx $lnv $lmv]] } else { return } } # Wireframe display # ------------------------------------------------------------------- proc DisplayWireframe {w lpoly lvtx lcnx lnv lmv} { if {$::stop} return global ax az ay set ax [expr {$ax-0.02}] set az [expr {$az+0.02}] set ay [expr {$ay+0.025}] foreach {M lnew lvn} [Transformations $lvtx $lnv] {} set i 0 foreach cnx $lcnx { set lcoords {} foreach j $cnx {lappend lcoords [lindex $lnew $j]} # Backface culing for hidden face. Not removed but only reduced to a point if {[lindex $lvn $i 2] < 0} { eval $w.c coords [lindex $lpoly $i] [join $lcoords] } else { $w.c coords [lindex $lpoly $i] [string repeat " [join [Barycenter $lcoords]]" [llength $cnx]] } incr i } if {[incr ::iterations] } { set ::run [after $::speed [list DisplayWireframe $w $lpoly $lvtx $lcnx $lnv $lmv]] } else { return } } # ------------------------------------------------------------------- proc Main {} { global stop global display global scx scy vdist speed set ::run {} set w .tdc catch {destroy $w} toplevel $w wm withdraw . wm title $w "Rotating polyhedra in Tk canvas " set display Shaded set scx 420 set scy 420 set vdist 1200 set ::scaspeed 40 set ::speed 40 pack [canvas $w.c -width $scx -height $scy -bg white -bg black -bd 0] $w.c delete all bind $w.c <Destroy> { after cancel $::run } set f1 [frame $w.f1 -relief sunken -borderwidth 2] pack $f1 -fill x button $f1.brun -text Stop -command {set stop 1} button $f1.bq -text Quit -command exit label $f1.l1 -text " " radiobutton $f1.rbs -text "Shaded" -variable display -value Shaded radiobutton $f1.rbw -text "Wireframe" -variable display -value Wireframe pack {*}[winfo children $f1] -side left set f2 [frame $w.f2 -relief sunken -borderwidth 2] pack $f2 -fill x foreach i {tetrahedron cube octahedron dodecahedron icosahedron} { button $f2.b$i -text $i -command "DisplayModel $w $i" } pack {*}[winfo children $f2] -side left set f3 [frame $w.f3 -relief sunken -borderwidth 2] pack $f3 -fill x label $f3.l1 -text "View distance " -width 12 scale $f3.sca -from 300 -to 1600 -length 300 \ -orient horiz -bd 1 -showvalue true -variable vdist pack {*}[winfo children $f3] -side left set f4 [frame $w.f4 -relief sunken -borderwidth 2] pack $f4 -fill x label $f4.l1 -text "Speed " -width 12 scale $f4.speed -from 1 -to 99 -length 300 \ -orient horiz -bd 1 -showvalue true -variable scaspeed \ -command {set speed [expr {100-$scaspeed}];#} pack {*}[winfo children $f4] -side left } Main