This page is under development. Comments are welcome, but please load any comments in the comments section at the bottom of the page. Please include your wiki MONIKER and date in your comment with the same courtesy that I will give you. Aside from your courtesy, your wiki MONIKER and date as a signature and minimal good faith of any internet post are the rules of this TCL-WIKI. Its very hard to reply reasonably without some background of the correspondent on his WIKI bio page. Thanks, gold 12Dec2018
gold Here is some TCL calculations for Babylonian weight riddle problems in calculator shell.
In the cuneiform math problems and coefficient lists on clay tablets, there are coefficient numbers which were used in determining the amount of materials and the daily work rates of the workers. In most cases, the math problem is how the coefficient was used in estimating materials, work rates, and math problems. One difficulty is determining the effective magnitude or power of the number coefficient in the base 60 notation. In cuneiform, numbers in base 60 are written using a relative notation. For example, 20 could represent either 20*3600,20,20/60, 20/3600, or even 1/20. The basic dimensions and final tallies were presented in the cuneiform accounts on clay tablets, but some calculations, some units, and some problem answers (aw shucks!) were left off the tablet. Successive or iterated math solutions are called algorithms and the Babylonian methods are some of the earliest algorithms documented circa 1600 BCE. The TCL procedures are descendants of this idea. The Babylonians did not use algebra notation, decimal notation, or modern units, so the reader will have to bear some anachronisms in the TCL code. At least one approach for the modern reader and using modern terminology is to develop the implied algebraic equations and decimal equivalents from the cuneiform numbers. Then the TCL calculator can be run over a number of testcases to validate the algebraic equations.
The Babylonians did not use algebra notation. The answer was given without worked solution, so problem was solved with algebra, ref Neugebauer and Sachs. User should be able to add and subtract terms of linear equation by 60/+7/+11 or 60/-7/-11 in entry fields. .
# using pseudocode for Babylonian weight riddle problems # possible problem instances set answers and printout with resulting values
In planning any software, it is advisable to gather a number of testcases to check the results of the program. The math for the testcases can be checked by pasting statements in the TCL console. Aside from the TCL calculator display, when one presses the report button on the calculator, one will have console show access to the capacity functions (subroutines).
table 1 | printed in | tcl wiki format |
---|---|---|
quantity | value | comment, if any |
1: | testcase_number | |
60.0 : | final weight | |
7.0 : | fraction 1/a | |
11.0 : | fraction 1/b | |
1.0 : | answers: optional | |
1. : | optional | |
1. : | optional | |
1. : | optional | |
48.125 : | initial weight |
table 2 | printed in | tcl wiki format |
---|---|---|
quantity | value | comment, if any |
2: | testcase_number | |
60.0 : | final weight | |
8.0 : | fraction 1/a | |
12.0 : | fraction 1/b | |
1.0 : | answers: optional | |
1. : | optional | |
1. : | optional | |
1. : | optional | |
49.230 : | initial weight |
table 3 | printed in | tcl wiki format |
---|---|---|
quantity | value | comment, if any |
3: | testcase_number | |
120.0 : | final weight | |
12.0 : | fraction 1/a | |
15.0 : | fraction 1/b | |
1.0 : | answers: optional | |
1. : | optional | |
1. : | optional | |
1. : | optional | |
103.846 : | initial weight |
# pretty print from autoindent and ased editor # Babylonian Weight Riddle Problems calculator # written on Windows XP on eTCL # working under TCL version 8.5.6 and 1.0.1 # gold on TCL WIKI, 25jan2017 package require Tk package require math::numtheory namespace path {::tcl::mathop ::tcl::mathfunc math::numtheory } set tcl_precision 17 frame .frame -relief flat -bg aquamarine4 pack .frame -side top -fill y -anchor center set names {{} { final weight :} } lappend names { fraction 1/a :} lappend names { fraction 1/b : } lappend names { answers: optional : } lappend names { optional :} lappend names { optional : } lappend names { optional : } lappend names { initial weight :} foreach i {1 2 3 4 5 6 7 8} { label .frame.label$i -text [lindex $names $i] -anchor e entry .frame.entry$i -width 35 -textvariable side$i grid .frame.label$i .frame.entry$i -sticky ew -pady 2 -padx 1 } proc about {} { set msg "Calculator for Babylonian Weight Riddle Problems from TCL WIKI, written on eTCL " tk_messageBox -title "About" -message $msg } proc calculate { } { global answer2 global side1 side2 side3 side4 side5 global side6 side7 side8 global testcase_number incr testcase_number set side1 [* $side1 1. ] set side2 [* $side2 1. ] set side3 [* $side3 1. ] set side4 [* $side4 1. ] set side5 [* $side5 1. ] set side6 [* $side6 1. ] set side7 [* $side7 1. ] set side8 [* $side8 1. ] set weight $side1 set fraction1 $side2 set fraction2 $side3 # initialize placeholder answer set result 1. set term1 [+ 1. [/ 1. $fraction1 ]] set term2 [/ 1. $fraction2 ] set term3 [+ $term1 [* $term2 $term1] ] set result [/ $weight $term3 ] set side5 1. set side6 1. set side7 1. set side8 $result } proc fillup {aa bb cc dd ee ff gg hh} { .frame.entry1 insert 0 "$aa" .frame.entry2 insert 0 "$bb" .frame.entry3 insert 0 "$cc" .frame.entry4 insert 0 "$dd" .frame.entry5 insert 0 "$ee" .frame.entry6 insert 0 "$ff" .frame.entry7 insert 0 "$gg" .frame.entry8 insert 0 "$hh" } proc clearx {} { foreach i {1 2 3 4 5 6 7 8 } { .frame.entry$i delete 0 end } } proc reportx {} { global side1 side2 side3 side4 side5 global side6 side7 side8 global testcase_number console show; puts "%|table $testcase_number|printed in| tcl wiki format|% " puts "&| quantity| value| comment, if any|& " puts "&| $testcase_number:|testcase_number | |& " puts "&| $side1 :|final weight | |&" puts "&| $side2 :|fraction 1/a | |& " puts "&| $side3 :|fraction 1/b | |& " puts "&| $side4 :|answers: optional| |&" puts "&| $side5 :|optional | |&" puts "&| $side6 :|optional | |&" puts "&| $side7 :|optional | |&" puts "&| $side8 :|initial weight | |&" } frame .buttons -bg aquamarine4 ::ttk::button .calculator -text "Solve" -command { calculate } ::ttk::button .test2 -text "Testcase1" -command {clearx;fillup 60. 7. 11.0 1. 1. 1. 1. 48.0} ::ttk::button .test3 -text "Testcase2" -command {clearx;fillup 60. 8.0 12.0 1. 1. 1. 1. 49.0 } ::ttk::button .test4 -text "Testcase3" -command {clearx;fillup 120. 12.0 15.0 1. 1. 1. 1. 104.0 } ::ttk::button .clearallx -text clear -command {clearx } ::ttk::button .about -text about -command {about} ::ttk::button .cons -text report -command { reportx } ::ttk::button .exit -text exit -command {exit} pack .calculator -in .buttons -side top -padx 10 -pady 5 pack .clearallx .cons .about .exit .test4 .test3 .test2 -side bottom -in .buttons grid .frame .buttons -sticky ns -pady {0 10} . configure -background aquamarine4 -highlightcolor brown -relief raised -border 30 wm title . "Babylonian Weight Riddle Problems Calculator"
For the push buttons, the recommended procedure is push testcase and fill frame, change first three entries etc, push solve, and then push report. Report allows copy and paste from console.
For testcases in a computer session, the eTCL calculator increments a new testcase number internally, eg. TC(1), TC(2) , TC(3) , TC(N). The testcase number is internal to the calculator and will not be printed until the report button is pushed for the current result numbers. The current result numbers will be cleared on the next solve button. The command { calculate; reportx } or { calculate ; reportx; clearx } can be added or changed to report automatically. Another wrinkle would be to print out the current text, delimiters, and numbers in a TCL wiki style table as
puts " %| testcase $testcase_number | value| units |comment |%" puts " &| volume| $volume| cubic meters |based on length $side1 and width $side2 |&"
Please place any comments here with your wiki MONIKER and date, Thanks gold 12Dec2018
Category Numerical Analysis | Category Toys | Category Calculator | Category Mathematics | Category Example | Toys and Games | Category Games | Category Application | Category GUI |