A little application to depicting bals bouncing off each other and the edges of the canvas.
Written by David Easton around 2003-03-17
pyk 2012-11-23: fixed a bug where the loop in [checkForCollision] became infinite if the velocity was set too high.
Ed Suominen: 25 Mar 2003 This is great! There are some pretty advanced calculations going on here.
David Easton: 26 Mar 2003 Thanks! The calculations used by postColVels come from conservation of energy and momentum. colide resolves velocities parallel and perpendicular to the collision. Thus, this should be a fairly accurate simulation.
#! /bin/env tclsh # Colliding Balls # Author: David Easton # mods by Jeff Hobbs just to brace expr's (improve speed) # and clean up some foreach usage # package require Tk ### configuration ### #velocity limit set velocity 8 # # Return an entry from the list at random # proc randFromList {inputList} { return [lindex $inputList [expr {int(rand() * [llength $inputList])}]] } # # Given the initial velocities and masses # calculates velocities following a collision # proc postColVels { u1 u2 m1 m2 } { # No collision if u2 > u1 if { $u2 > $u1 } { return [list $u1 $u2] } set u1 [expr {1.0 * $u1}] set u2 [expr {1.0 * $u2}] set m1 [expr {1.0 * $m1}] set m2 [expr {1.0 * $m2}] set M [expr {$m1 / $m2}] set b [expr {($M * $u1) + $u2}] set c [expr {($M * $u1 * $u1) + ($u2 * $u2)}] set q [expr {2 * $M * $b}] set p [expr {4 * $M * $M * $b * $b}] set r [expr {4 * ($M + ($M * $M)) * (($b * $b) - $c)}] set s [expr {2 * ($M + ($M * $M))}] if { $r > $p } { "No solution" } else { set root [expr {sqrt($p -$r)}] #set v1(1) [expr {($q + $root) / $s}] set v1(2) [expr {($q - $root) / $s}] #set v2(1) [expr {$b - ($M * $v1(1))}] set v2(2) [expr {$b - ($M * $v1(2))}] # v2 should always be greater than v1 # which means the answer is always v1(2) and v2(2) return [list $v1(2) $v2(2)] } } proc createBall { tag } { variable velocity global State set radius [expr {int((30 * rand()) + 20)}] set diam [expr {2 * $radius}] # Mass is proportional to area set mass [expr {$radius * $radius}] set canvasHeight [winfo height $State(canvas)] set canvasWidth [winfo width $State(canvas)] set xpos [expr {$radius + int(($canvasWidth - $diam) * rand())}] set ypos [expr {$radius + int(($canvasHeight - $diam) * rand())}] set x1 [expr {$xpos - $radius}] set x2 [expr {$xpos + $radius}] set y1 [expr {$ypos - $radius}] set y2 [expr {$ypos + $radius}] # Random colour set colList [list red yellow darkgreen green blue lightblue orange pink purple white] set colour [randFromList $colList] # Now create ball set id [$State(canvas) create oval $x1 $y1 $x2 $y2 \ -outline black -fill $colour -tags [list $tag ball]] set State(id2tag,$id) $tag set xvel [expr {(rand() * $velocity) -2}] set yvel [expr {(rand() * $velocity) -2}] set State(pos,$tag) [list $xpos $ypos] set State(vel,$tag) [list $xvel $yvel] set State(rad,$tag) $radius set State(mass,$tag) $mass } # # Check if we have collided with another ball # # Returns: 1 - If there was a collision # 0 - If no collision # proc checkForCollision { tag } { global State set didCollide 0 set overlapList {} lassign $State(pos,$tag) ourX ourY set ourId [$State(canvas) find withtag $tag] set id [$State(canvas) find closest $ourX $ourY $State(rad,$tag) $ourId] set seen [list] #if the velocity is higher than the radius of the smallest ball, the #[canvas find] command above might cause an endess loop here, so use the #extra check for membership in $seen while { $id ne $ourId && $id ni $seen} { if { [lsearch -glob [$State(canvas) gettags $id] "ball*"] > -1 } { set didCollide 1 lappend overlapList $id } lappend seen [set id [$State(canvas) find closest $ourX $ourY $State(rad,$tag) $id]] } if { [llength $overlapList] > 0 } { foreach id $overlapList { collide $tag $State(id2tag,$id) } } return $didCollide } proc moveBalls { } { global State set canvasHeight [winfo height $State(canvas)] set canvasWidth [winfo width $State(canvas)] foreach ball $State(ballList) { lassign $State(pos,$ball) xpos ypos lassign $State(vel,$ball) xvel yvel set xpos [expr {$xpos + $xvel}] set ypos [expr {$ypos + $yvel}] $State(canvas) move $ball $xvel $yvel # Bounce off the edges lassign [$State(canvas) bbox $ball] x1 y1 x2 y2 # Left edge if { $x1 < 0 && $xvel < 0} { set xvel [expr {-1.0 * $xvel}] } if { $x2 > $canvasWidth && $xvel > 0} { set xvel [expr {-1.0 * $xvel}] } if { $y1 < 0 && $yvel < 0} { set yvel [expr {-1.0 * $yvel}] } if { $y2 > $canvasHeight && $yvel > 0} { set yvel [expr {-1.0 * $yvel}] } if {[checkForCollision $ball]} { # Collided set State(pos,$ball) [list $xpos $ypos] } else { # Update for new position and velocity set State(pos,$ball) [list $xpos $ypos] set State(vel,$ball) [list $xvel $yvel] } } after 50 moveBalls } proc collide { tag1 tag2 } { global State # Get position of each ball lassign $State(pos,$tag1) x1 y1 lassign $State(pos,$tag2) x2 y2 # Always call the ball on the right (2) and the one on the left (1) if { $x1 > $x2 } { set temp $tag2 set tag2 $tag1 set tag1 $temp # Get position of each ball lassign $State(pos,$tag1) x1 y1 lassign $State(pos,$tag2) x2 y2 } # Get velocity of each ball lassign $State(vel,$tag1) ux1 uy1 lassign $State(vel,$tag2) ux2 uy2 # Work out the angle along the axis of collision set diffX [expr {1.0 * ($x2 - $x1)}] set diffY [expr {1.0 * ($y2 - $y1)}] set phi [expr {atan($diffY / $diffX)}] # Now work out the velocity parallel and perpendicular set uparr1 [expr {($ux1 * cos($phi)) + ($uy1 * sin($phi))}] set uperp1 [expr {($ux1 * sin($phi)) - ($uy1 * cos($phi))}] set uparr2 [expr {($ux2 * cos($phi)) + ($uy2 * sin($phi))}] set uperp2 [expr {($ux2 * sin($phi)) - ($uy2 * cos($phi))}] # If they are not going towards each other, then they will not collide if { $uparr2 > $uparr1 } { return } set mass1 $State(mass,$tag1) set mass2 $State(mass,$tag2) lassign [postColVels $uparr1 $uparr2 $mass1 $mass2] vparr1 vparr2 # Perpendicular velocites are unchanged set vperp1 $uperp1 set vperp2 $uperp2 # Now convert back into x and y movements set vx1 [expr {($vparr1 * cos($phi)) + ($vperp1 * sin($phi))}] set vy1 [expr {($vparr1 * sin($phi)) - ($vperp1 * cos($phi))}] set vx2 [expr {($vparr2 * cos($phi)) + ($vperp2 * sin($phi))}] set vy2 [expr {($vparr2 * sin($phi)) - ($vperp2 * cos($phi))}] # Update for new velocities set State(vel,$tag1) [list $vx1 $vy1] set State(vel,$tag2) [list $vx2 $vy2] } # Seed random number generator expr {srand([clock clicks])} # Window things wm title . "Bouncing balls" # Create canvas set State(canvas) [canvas .c -width 500 -height 400] # Create balls set State(ballList) [list ball1 ball2 ball3 ball4 ball5 ball6 ball7 ball8] bind .c <Map> { foreach ball $State(ballList) { createBall $ball } moveBalls } pack $State(canvas) -fill both -expand true
uniquename 2013jul29
This code deserves an image to show what the Tk GUI looks like:
(Thanks to 'gnome-screenshot', 'mtpaint', and ImageMagick 'convert' on Linux for, respectively, capturing the screen in a PNG file, cropping the image, and converting the resulting PNG file to a JPEG file about one-tenth the size of the PNG file. Thanks to FOSS developers everywhere --- including Linux kernel and Gnu developers. I used the 'mv' command and the ImageMagick 'identify' command in a shell script to easily rename the cropped image file to contain the image dimensions in pixels.)
When the Tk GUI first pops up the balls are in motion --- bouncing off the walls (the canvas borders) and off of each other. I captured this image when the balls were in motion --- hence the occurrence of some partial filled-circles in the image.