EKB This is a small package that implements some functions for gamma distributions. (It's also been submitted to tcllib.)
It implements cdf-gamma, pdf-gamma, and random-gamma (which generates gamma-distributed random deviates). It has a little test code at the bottom to generate histogram plots of the (pseudo)randomly-generated values.
It uses the code for the Incomplete gamma, read in as "incgamma.tcl".
EKB Already found an error in the random-number generation routine. Now fixed.
Here's a screenshot showing a combination of the pdf and the random deviates, to see how well they agree:
package require math package require math::statistics source "incgamma.tcl" # Set of functions for the gamma distribution # Implemented by Eric Kemp-Benedict, 2007 # # This uses the following parameterization for the gamma: # GammaDist(x) = beta * (beta * x)^(alpha-1) e^(-beta * x) / GammaFunc(alpha) # Here, alpha is the shape parameter, and beta is the rate parameter # Alternatively, a "scale parameter" theta = 1/beta is sometimes used proc pdf-gamma {alpha beta x} { if {$beta < 0} { error "Rate parameter 'beta' must be be positive" return } set prod [expr {1.0 * $x * $beta}] set Galpha [expr {exp([::math::ln_Gamma $alpha])}] expr {(1.0 * $beta/$Galpha) * pow($prod, ($alpha - 1.0)) * exp(-$prod)} } proc cdf-gamma {alpha beta x} { incompleteGamma [expr {$beta * $x}] $alpha } # Generate a list of gamma-distributed random deviates # Use Cheng's envelope rejection method, as documented # in Dagpunar, J.S. 2007. "Simulation and Monte Carlo: # With Applications in Finance and MCMC" proc random-gamma {alpha beta number} { if {$alpha <= 1} { set lambda $alpha } else { set lambda [expr {sqrt(2.0 * $alpha - 1.0)}] } set retval {} for {set i 0} {$i < $number} {incr i} { while {1} { # Two rands: one for deviate, one for acceptance/rejection set r1 [expr {rand()}] set r2 [expr {rand()}] # Calculate deviate from enveloping proposal distribution (a Lorenz distribution) set lnxovera [expr {(1.0/$lambda) * (log(1.0 - $r1) - log($r1))}] if {![catch {expr {$alpha * exp($lnxovera)}} x]} { # Apply acceptance criterion if {log(4.0*$r1*$r1*$r2) < ($alpha - $lambda) * $lnxovera + $alpha - $x} { break } } } lappend retval [expr {1.0 * $x/$beta}] } return $retval } ########################################################################################## ## ## TESTING ## ## Can test pdf & cdf by running in a console. For random numbers, generate histograms: ## ########################################################################################## canvas .c pack .c -side top frame .f pack .f -side bottom label .f.alphal -text "alpha" entry .f.alphae -textvariable alpha pack .f.alphal -side left pack .f.alphae -side left label .f.betal -text "beta" entry .f.betae -textvariable beta pack .f.betal -side left pack .f.betae -side left button .f.run -text "Run" -command runtest pack .f.run -side left proc runtest {} { set vals [random-gamma $::alpha $::beta 5000] set remainder 5000 for {set x 0.0} {$x < 20.0} {set x [expr {$x + 0.25}]} { lappend bins $x set distvallow [pdf-gamma $::alpha $::beta $x] set distvalhigh [pdf-gamma $::alpha $::beta [expr {$x + 0.25}]] # Total trials (5000) * step (0.25) * average value set distval [expr {int(5000 * 0.25 * 0.5 * ($distvallow + $distvalhigh))}] lappend distcounts $distval } # Assume none are left lappend distcounts 0.0 set bincounts [::math::statistics::histogram $bins $vals] .c delete hist .c delete dist math::statistics::plot-scale .c 0 20 0 [math::statistics::max $bincounts] math::statistics::plot-histogram .c $bincounts $bins hist math::statistics::plot-histogram .c $distcounts $bins dist .c itemconfigure dist -fill {} -outline green } set alpha 1 set beta 0.5 runtest
See also Statistical Distributions