EKB This is an implementation of the incomplete Beta function Ix(a, b), defined as:
/ x 1 | a-1 b-1 Ix(a,b) = ------- | dt t (1 - t) B(a, b) | / 0
where B(a,b) is the Beta function. The incomplete Beta function is the cumulative probability function for the Beta distribution.
EKB 11 Jan 2007: Significantly improved on the code by replacing the series expansion with a continued fraction implementation. Running times are shorter and more consistent with different parameters.
This code has been tested as part of the tests run on the Beta distribution. Here are the results of the tests, where the expected results were calculated using R:
23 tests run 23 tests passed 100.0% pass rate All tests: Call: ::beta::pdf-beta 1.3 2.4 0.2 Error: PASSED Result: 1.689031804741256 Expected: 1.68903180472449 ± 1.0e-9 Call: ::beta::pdf-beta 1 1 0.5 Error: PASSED Result: 0.9999999999900844 Expected: 1.0 ± 1.0e-9 Call: ::beta::pdf-beta 3.7 0.9 0.0 Error: PASSED Result: 0.0 Expected: 0.0 ± 1.0e-9 Call: ::beta::pdf-beta 1.8 4.2 1.0 Error: PASSED Result: 0.0 Expected: 0.0 ± 1.0e-9 Call: ::beta::pdf-beta 320 400 0.4 Error: PASSED Result: 1.1819237678887626 Expected: 1.18192376783860 ± 1.0e-9 Call: ::beta::pdf-beta 500 1 0.2 Error: PASSED Result: 0.0 Expected: 0.0 ± 1.0e-9 Call: ::beta::pdf-beta 1000 1000 0.50 Error: PASSED Result: 35.678022292091086 Expected: 35.6780222917086 ± 1.0e-9 Call: ::beta::cdf-beta 2.1 3.0 0.2 Error: PASSED Result: 0.16220409276377096 Expected: 0.16220409275804 ± 1.0e-9 Call: ::beta::cdf-beta 4.2 17.3 0.5 Error: PASSED Result: 0.998630771122973 Expected: 0.998630771123192 ± 1.0e-9 Call: ::beta::cdf-beta 500 375 0.7 Error: PASSED Result: 0.9999999999999996 Expected: 1.0 ± 1.0e-9 Call: ::beta::cdf-beta 250 760 0.2 Error: PASSED Result: 0.000125234318663519 Expected: 0.000125234318666948 ± 1.0e-9 Call: ::beta::cdf-beta 43.2 19.7 0.6 Error: PASSED Result: 0.07288812920992815 Expected: 0.0728881294218269 ± 1.0e-9 Call: ::beta::cdf-beta 500 640 0.3 Error: PASSED Result: 2.9987254761180083e-23 Expected: 2.99872547567313e-23 ± 1.0e-9 Call: ::beta::cdf-beta 400 640 0.3 Error: PASSED Result: 3.070566962863235e-9 Expected: 3.07056696205524e-09 ± 1.0e-9 Call: ::beta::cdf-beta 0.1 30 0.1 Error: PASSED Result: 0.998641008647038 Expected: 0.998641008671625 ± 1.0e-9 Call: ::beta::cdf-beta 0.01 0.03 0.9 Error: PASSED Result: 0.7658650057014063 Expected: 0.765865005703006 ± 1.0e-9 Call: ::beta::cdf-beta 2 3 0.9999 Error: PASSED Result: 0.9999999999960003 Expected: 0.999999999996 ± 1.0e-9 Call: ::beta::cdf-beta 249.9999 759.99999 0.2 Error: PASSED Result: 0.00012523707557178366 Expected: 0.000125237075575121 ± 1.0e-9 Call: ::beta::cdf-beta 1000 1000 0.4 Error: PASSED Result: 8.23161135455908e-20 Expected: 8.23161135486914e-20 ± 1.0e-9 Call: ::beta::cdf-beta 1000 1000 0.499 Error: PASSED Result: 0.46436944398866614 Expected: 0.464369443974288 ± 1.0e-9 Call: ::beta::cdf-beta 1000 1000 0.5 Error: PASSED Result: 0.4999999999893452 Expected: 0.5 ± 1.0e-9 Call: ::beta::cdf-beta 1000 1000 0.7 Error: PASSED Result: 1.0 Expected: 1.0 ± 1.0e-9 Call: ::beta::cdf-beta 2 3 0.6 Error: PASSED Result: 0.8207999999940695 Expected: 0.8208 ± 1.0e-9 Average time/1000 iterations for ::beta::cdf-beta 2 3 0.9999: 51.041 microseconds per iteration Average time/1000 iterations for ::beta::cdf-beta 250 760 0.47: 87.181 microseconds per iteration Average time/1000 iterations for ::beta::cdf-beta 249.9999 759.99999 0.47: 106.473 microseconds per iteration Average time/1000 iterations for ::beta::cdf-beta 2.1 3.2 0.7: 74.872 microseconds per iteration Average time/1000 iterations for ::beta::cdf-beta 4.3 9.2 0.3: 91.824 microseconds per iteration Average time/1000 iterations for ::beta::cdf-beta 2.5 1.9 0.1: 63.872 microseconds per iteration Average time/1000 iterations for ::beta::cdf-beta 5 7 0.3: 75.041 microseconds per iteration
The running times are average times over 1000 runs (using time).
Here's the code:
package require math namespace import ::math::ln_Gamma namespace import ::math::Beta # # Implement the incomplete beta function Ix(a, b) # proc incompleteBeta {a b x {tol 1.0e-9}} { if {$x < 0.0 || $x > 1.0} { error "Value out of range in incomplete Beta function: x = $x, not in \[0, 1\]" } if {$a <= 0.0} { error "Value out of range in incomplete Beta function: a = $a, must be > 0" } if {$b <= 0.0} { error "Value out of range in incomplete Beta function: b = $b, must be > 0" } if {$x < $tol} { return 0.0 } if {$x > 1.0 - $tol} { return 1.0 } # Rearrange if necessary to get continued fraction to behave if {$x < 0.5} { return [beta_cont_frac $a $b $x $tol] } else { set z [beta_cont_frac $b $a [expr {1.0 - $x}] $tol] return [expr {1.0 - $z}] } } ##################################################### # # Continued fraction for Ix(a,b) # # Abramowitz & Stegun 26.5.9 # ##################################################### proc beta_cont_frac {a b x {tol 1.0e-9}} { set max_iter 512 set aplusb [expr {$a + $b}] set amin1 [expr {$a - 1}] set lnGapb [ln_Gamma $aplusb] set term1 [expr {$lnGapb- [ln_Gamma $a] - [ln_Gamma $b]}] set term2 [expr {$a * log($x) + ($b - 1.0) * log(1.0 - $x)}] set pref [expr {exp($term1 + $term2)/$a}] set z [expr {$x / (1.0 - $x)}] set v 1.0 set h_1 1.0 set h_2 0.0 set k_1 1.0 set k_2 1.0 for {set m 1} {$m < $max_iter} {incr m} { set f1 [expr {$amin1 + 2 * $m}] set e2m [expr {-$z * double(($amin1 + $m) * ($b - $m))/ \ double(($f1 - 1) * $f1)}] set e2mp1 [expr {$z * double($m * ($aplusb - 1 + $m)) / \ double($f1 * ($f1 + 1))}] set h_2m [expr {$h_1 + $e2m * $h_2}] set k_2m [expr {$k_1 + $e2m * $k_2}] set h_2 $h_2m set k_2 $k_2m set h_1 [expr {$h_2m + $e2mp1 * $h_1}] set k_1 [expr {$k_2m + $e2mp1 * $k_1}] set vprime [expr {$h_1/$k_1}] if {abs($v - $vprime) < $tol} { break } set v $vprime } if {$m == $max_iter} { error "beta_cont_frac: Exceeded maximum number of iterations" } set retval [expr {$pref * $v}] # Because of imprecision in underlying Tcl calculations, may fall out of bounds if {$retval < 0.0} { set retval 0.0 } elseif {$retval > 1.0} { set retval 1.0 } return $retval }