if 0 { Derived from [L1 ]. I changed seven lines to create the triangle version of this puzzle. 99% of code is due to Richard Suchenwirth }
set about "Over and Out R.Suchenwirth 2003 mods by RAI 2016 Powered by Tcl/Tk! A peg jumps into a hole over a neighboring peg, to remove it. Click first on peg, then on hole. Try to remove all pegs but the last. All moves can be undone in reverse order." package require Tk proc main {} { frame .f label .f.1 -text Score: label .f.2 -bg white -textvar g(score) -width 6 button .f.n -text New -command {reset .c} button .f.u -text Undo -command {undo .c} button .f.a -text About -command {tk_messageBox -message $about} button .f.x -text X -command exit eval pack [winfo children .f] -side left pack .f [canvas .c -bg orange] foreach {rows cols} { {3} {3} {4} {3 4} {5} {3 4 5} {6} {3 4 5 6} {7} {3 4 5 6 7} } { foreach row $rows { foreach col $cols { drawHole .c $row $col } } } reset .c } proc reset w { putPeg $w all pullPeg $w 3,3 ;# hole in center array set ::g {peg {} score 0 stack {}} $w bind peg <1> {markPeg %W} $w bind hole <1> {markHole %W} } proc drawHole {w row col} { set dia 20 ; set gap 6 set x0 [expr {($col-1)*($dia+$gap)+$gap}] set x0 [expr {$x0 + ((7-$row)*($dia+$gap))/2}] set x1 [expr {$x0+$dia}] set y0 [expr {($row-1)*($dia+$gap)+$gap}] set y1 [expr {$y0+$dia}] oval $w $x0 $y0 $x1 $y1 -tag $row,$col -outline black } proc pullPeg {w tag} { $w itemconfig $tag -fill orange3 $w dtag $tag peg $w addtag hole withtag $tag } proc putPeg {w tag} { $w itemconfig $tag -fill white $w dtag $tag hole $w addtag peg withtag $tag } proc markPeg w { set id [$w find withtag current] $w itemconfig $id -fill yellow $w itemconfig $::g(peg) -fill white puts " ::g(peg) [lindex [$w gettags $id] 0] " ; update set ::g(peg) [lindex [$w gettags $id] 0] }
if 0 {This evaluates the validity of a move. Richard used hypot is capture up-down, left-right moves. I've added the other direction.
Also added check for middle position being a peg!} proc markHole w { global g if {$g(peg)==""} return set id [$w find withtag current] set rc [lindex [$w gettags $id] 0] foreach {hr hc} [split $rc ,] break foreach {pr pc} [split $g(peg) ,] break set isValid 0 if {hypot($hr-$pr,$hc-$pc)== 2.} {set isValid 1} if {$hr-$pr== 2 && $hc-$pc== 2} {set isValid 1} if {$hr-$pr== -2 && $hc-$pc== -2} {set isValid 1} set midr [expr ($hr+$pr)/2] set midc [expr ($hc+$pc)/2] set cid [.c find withtag $midr,$midc] if {[.c itemcget $cid -fill] != "white"} {set isValid 0} if {$isValid==1} { pullPeg $w $g(peg) set over [expr {($hr+$pr)/2}],[expr {($hc+$pc)/2}] pullPeg $w $over putPeg $w $rc lappend g(stack) $g(peg) $over $rc set g(peg) {} incr g(score) } else { #indicate invalid move $w itemconfig $g(peg) -fill red after 500 $w itemconfig $g(peg) -fill white } } proc undo w { global g if {[llength $g(stack)]<3} return foreach i {pull put put} { ${i}Peg $w [pop g(stack)] } incr g(score) -1 }
if 0 {A generic stack routine - made very easy with the K combinator. Pushing is simply done with lappend.}
proc pop varName { upvar 1 $varName v K [lindex $v end] [set v [lrange $v 0 end-1]] } proc K {a b} {set a}
if 0 {This oval workaround using regular polygons is only needed for the Keuchel CE port, which can't draw circles.}
proc rp {x0 y0 x1 y1 {n 0} } { set xm [expr {($x0+$x1)/2.}] set ym [expr {($y0+$y1)/2.}] set rx [expr {$xm-$x0}] set ry [expr {$ym-$y0}] if {$n==0} { set n [expr {round(($rx+$ry))}] } set step [expr {atan(1)*8/$n}] set res "" set th [expr {atan(1)*6}] for {set i 0} {$i<$n} {incr i} { lappend res \ [expr {$xm+$rx*cos($th)}] \ [expr {$ym+$ry*sin($th)}] set th [expr {$th+$step}] } set res } proc oval {w x0 y0 x1 y1 args} { eval $w create poly [rp $x0 $y0 $x1 $y1] $args }
#--------- let's go!
main wm geometry . 240x268+0+0