##################################################################### # procedures to show internal IEEE standard "double" representation # ##################################################################### # big endian code proc floatToBinaryBigEndian {d} { binary scan [binary format d $d] B* v set sign [string index $v 0] set exponent [string range $v 1 11] set mantissa [string range $v 12 end] return [list $sign $mantissa $exponent] } proc binaryToFloatBigEndian {sign mantissa exponent} { if {$sign != {0} && $sign != {1}} { error "bad sign \"$sign\"" } if {[string length $mantissa] != 52} { error "bad mantissa \"$mantissa\"" } if {[string length $exponent] != 11} { error "bad exponent \"$exponent\"" } set v [binary format B64 $sign$exponent$mantissa] binary scan $v d v return $v } # little endian code proc __reverse__ {s} { for {set i [string length $s]} {$i >= 0} {incr i -1} { append sr [string index $s $i] } return $sr } proc floatToBinaryLittleEndian {d} { binary scan [binary format d $d] b* v set v [__reverse__ $v] set sign [string index $v 0] set exponent [string range $v 1 11] set mantissa [string range $v 12 end] return [list $sign $mantissa $exponent] } proc binaryToFloatLittleEndian {sign mantissa exponent} { if {$sign != {0} && $sign != {1}} { error "bad sign \"$sign\"" } if {[string length $mantissa] != 52} { error "bad mantissa \"$mantissa\"" } if {[string length $exponent] != 11} { error "bad exponent \"$exponent\"" } set v [binary format b64 [__reverse__ $sign$exponent$mantissa]] binary scan $v d v return $v } # platform independent procedures # proc floatToBinary {d} { global tcl_platform switch $tcl_platform(byteOrder) { bigEndian {return [floatToBinaryBigEndian $d]} littleEndian {return [floatToBinaryLittleEndian $d]} default { return -code error "unknown byteOrder \"$tcl_platform(byteOrder)\"" } } } proc binaryToFloat {sign mantissa exponent} { global tcl_platform switch $tcl_platform(byteOrder) { bigEndian {return [binaryToFloatBigEndian $sign $mantissa $exponent]} littleEndian { return [binaryToFloatLittleEndian $sign $mantissa $exponent] } default { return -code error "unknown byteOrder \"$tcl_platform(byteOrder)\"" } } } proc floatToBinaryTest {value sign mantissa exponent} { set r [floatToBinary $value] if { [lindex $r 0] != $sign || [lindex $r 1] != $mantissa || [lindex $r 2] != $exponent } { return -code error "this machine is not IEEE floating point compliant" } } # Some tests floatToBinaryTest 1.0 0 0000000000000000000000000000000000000000000000000000 01111111111 floatToBinaryTest -1.0 1 0000000000000000000000000000000000000000000000000000 01111111111 # An example why you should put braces around "expr" argument set tcl_precision 12 set pi [expr {acos(-1.0)}] floatToBinaryTest $pi 0 1001001000011111101101010100010001000010110100011000 10000000000 floatToBinaryTest [expr {$pi}] 0 1001001000011111101101010100010001000010110100011000 10000000000 floatToBinaryTest [expr $pi] 0 1001001000011111101101010100010001000010111011101010 10000000000 # the 17 digits string representation is exact set tcl_precision 17 set pi [expr {acos(-1.0)}] floatToBinaryTest $pi 0 1001001000011111101101010100010001000010110100011000 10000000000 floatToBinaryTest [expr {$pi}] 0 1001001000011111101101010100010001000010110100011000 10000000000 floatToBinaryTest [expr $pi] 0 1001001000011111101101010100010001000010110100011000 10000000000 puts [binaryToFloat 0 1001001000011111101101010100010001000010110100010111 10000000000] ;# 3.1415926535897927 puts [binaryToFloat 0 1001001000011111101101010100010001000010110100011000 10000000000] ;# 3.1415926535897931 puts [binaryToFloat 0 1001001000011111101101010100010001000010110100011001 10000000000] ;# 3.1415926535897936 puts [binaryToFloat 0 1001001000011111101101010100010001000010110100010111 10000000000] ;# 3.1415926535897927 puts [binaryToFloat 0 1001001000011111101101010100010001000010110100011000 10000000000] ;# 3.1415926535897931 puts [binaryToFloat 0 1001001000011111101101010100010001000010110100011001 10000000000] ;# 3.1415926535897936 # Special representations binaryToFloat 0 0000000000000000000000000000000000000000000000000000 00000000000 ;# 0.0 binaryToFloat 0 0000000000000000000000000000000000000000000000000001 00000000000 ;# 4.9406564584124654e-324 binaryToFloat 0 1111111111111111111111111111111111111111111111111111 00000000000 ;# 2.2250738585072009e-308 binaryToFloat 0 0000000000000000000000000000000000000000000000000000 00000000001 ;# 2.2250738585072014e-308 binaryToFloat 0 0000000000000000000000000000000000000000000000000000 11111111110 ;# 8.9884656743115795e+307 binaryToFloat 0 1111111111111111111111111111111111111111111111111111 11111111110 ;# 1.7976931348623157e+308 binaryToFloat 0 0000000000000000000000000000000000000000000000000000 11111111111 ;# inf binaryToFloat 1 0000000000000000000000000000000000000000000000000000 11111111111 ;# -inf binaryToFloat 0 1111111111111111111111111111111111111111111111111111 11111111111 ;# nan binaryToFloat 1 1111111111111111111111111111111111111111111111111111 11111111111 ;# nan
As the code above is quite capable of recognizing itself, it will only work if your platform uses the IEEE format [L1 ] as its native representation of floating point numbers. Tcl depends on the C language for this matter, and ISO C does not require floating point numbers to adhere to any specific format.
PYK 2014-05-14: The code above purports to show an example why you should put braces around "expr" argument, but I don't see any difference in behavior between the braced and unbraced versions of the commands. Was there one at some point ? Am I missing something ?
AMG: Look closer:
set tcl_precision 12 set pi [expr {acos(-1.0)}] floatToBinaryTest $pi 0 1001001000011111101101010100010001000010110100011000 10000000000 floatToBinaryTest [expr {$pi}] 0 1001001000011111101101010100010001000010110100011000 10000000000 floatToBinaryTest [expr $pi] 0 1001001000011111101101010100010001000010111011101010 10000000000 ^^^^^^ ^
As for what's happening, it's rather deep and confusing. In this instance, the only functional difference between the last two lines is whether it's the Tcl interpreter or the [expr] engine that performs the substitution. $pi's string representation is 3.14159265359, though in the first two lines it remains a pure double.
The third line causes $pi to shimmer from double to string to expression before [expr] reconstitutes the numeric value from the string value, which (thanks to the limited tcl_precision) lost some precision when it was generated.
Compare with the first line which passes the (pure double) value to [floatToBinaryTest] which does [binary format] on it (as a double) without needing its string value. Then look at the second line which asks [expr] to simply return its argument without interpreting it, before passing it along to [floatToBinaryTest]. But the third line goes the long route from double to string to expression to double.
PYK: A most excellent explanation. Thank you!
PYK: I wouldn't have expected the third line to cause $pi to shimmer to a string, though, because my understanding was that such strings remained "pure" across being passed into a command, as no substitution is required. I'm not quite sure what to make of my understanding now.
AMG: [expr] doesn't want a double argument, it wants an expression argument. Hence shimmering. [expr] could be optimized to directly recognize int and double arguments, but what would be the gain?