mpr 2016-01-28: Karatsuba multiplication is an algorithm invented by Anatoly Karatsuba in 1960 to multiply n-digit numbers in less than O(n^2) time. The algorithm was invented for use on integers, but can be applied to polynomials represented as coefficient arrays. Here is an implementation based on this paper http://www.ijcse.com/docs/INDJCSE12-03-01-082.pdf .
proc odd { n } { expr { $n % 2 } } proc zeros { n } { lrepeat $n 0 } proc swap { x y } { uplevel [subst { set tmp $$x; set $x $$y; set $y \$tmp }] } # Implements Karatsuba fast multiplication on polynomials represented # by coefficient lists. proc karatsuba { A B } { # make A the longest list (highest degree polynomial). if { [llength $B] > [llength $A] } { swap A B } # put max length in n, # min length in m. set n [llength $A] set m [llength $B] set D [zeros [expr { ($n+$m)/2 }]] set S [zeros [expr { $n+$m-1 }]] set T [zeros [expr { $n+$m-1 }]] set C [zeros [expr { $n+$m-1 }]] # Compute products of same-indexed coefficients. for {set i 0} {$i < $m} {incr i} { lset D $i [expr { [lindex $A $i] * [lindex $B $i] }] } for {set i 1} {$i < $n+$m-2} {incr i} { for {set p 0} {$p < min($m,$i)} {incr p} { set q [expr { $i - $p }] if { $p >= $q } { break } set ap [lindex $A $p] set aq [lindex $A $q] set bp [lindex $B $p] set dp [lindex $D $p] if { $q < $m && $p < $m } { set bq [lindex $B $q] set dq [lindex $D $q] lset S $i [expr { [lindex $S $i] + (($ap + $aq) * ($bp + $bq)) }] lset T $i [expr { [lindex $T $i] + $dp + $dq }] } elseif { $q >= $m && $q < $n } { lset S $i [expr { [lindex $S $i] + (($ap + $aq) * $bp) }] lset T $i [expr { [lindex $T $i] + $dp }] } } } # Set coeffients of resulting polynomial. for {set i 0} {$i < $n+$m-1} {incr i} { if { $i == 0 } { lset C $i [lindex $D $i] } elseif { $i == $n+$m-2 } { lset C $i [expr { [lindex $A end] * [lindex $B end] }] } elseif { [odd $i] } { lset C $i [expr { [lindex $S $i] - [lindex $T $i] }] } else { lset C $i [expr { [lindex $S $i] - [lindex $T $i] + [lindex $D [expr { $i/2 }]] }] } } set C } proc polly { coeffs var } { for {set i 1} {$i < [llength $coeffs]} {incr i} { lset coeffs $i "[lindex $coeffs $i]$var^$i" } lreverse [join $coeffs " + "] } # 8x^3 + 7x^2 + 8x + 32 set A {32 8 7 8} # 4x^3 + 8x^2 + 12 set B {12 0 8 4} puts [polly [karatsuba $A $B] x] # outputs: # 32x^6 + 92x^5 + 88x^4 + 288x^3 + 340x^2 + 96x^1 + 384